Dictionary learning of sound speed profiles

نویسندگان

  • Michael Bianco
  • Peter Gerstoft
چکیده

To provide constraints on the inversion of ocean sound speed profiles (SSPs), SSPs are often modeled using empirical orthogonal functions (EOFs). However, this regularization, which uses the leading order EOFs with a minimum-energy constraint on the coefficients, often yields low resolution SSP estimates. In this paper, it is shown that dictionary learning, a form of unsupervised machine learning, can improve SSP resolution by generating a dictionary of shape functions for sparse processing (e.g., compressive sensing) that optimally compress SSPs; both minimizing the reconstruction error and the number of coefficients. These learned dictionaries (LDs) are not constrained to be orthogonal and thus, fit the given signals such that each signal example is approximated using few LD entries. Here, LDs describing SSP observations from the HF-97 experiment and the South China Sea are generated using the K-SVD algorithm. These LDs better explain SSP variability and require fewer coefficients than EOFs, describing much of the variability with one coefficient. Thus, LDs improve the resolution of SSP estimates with negligible computational burden.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

A Simulation Study of Multi-path Characteristics of Acoustic Propagation in the Strait of Hormuz

Multi-path interference due to boundary reflection in shallow water acoustic communication poses a major obstacle to reliable and high-speed underwater communication system. In this study, initially 3D variations of field data such as sound speed, temperature and salinity in horizontal transects of the Strait of Hormuz were analyzed using the ROPME data. Later, data on typical sound speed ...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

A Block Sparsity Approach to Multiple Dictionary Learning for Audio Modeling

Dictionary learning algorithms for audio modeling typically learn a dictionary such that each time frame of the given sound source is approximately equal to a linear combination of the dictionary elements. Since audio is non-stationary data, learning a single dictionary to explain all time frames of the sound source might not be the best modeling strategy. We therefore recently proposed a techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 141 3  شماره 

صفحات  -

تاریخ انتشار 2017